Building integrated renewable energy

Author:

Lin Yaolin1ORCID,Yang Wei2ORCID,Hao Xiaoli3ORCID,Yu Changxiong4

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China

2. Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne, Australia

3. College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China

4. Hunan City University Design and Research Institute Co., Ltd, Changsha, Hunan, China

Abstract

About one-third of the primary energy in the world is consumed by buildings. A large amount of CO2 emission due to building energy consumption has threatened the sustainable development of the world. Improvement on the building energy performance, especially by integration with renewable energy resources has attracted interest worldwide to reduce greenhouse gas emission to make our society more sustainable. This Special Issue on building integrated renewable energy was open to all contributors in the field of building energy efficiency. The original experimental studies, numerical simulations, and reviews in all aspects of renewable energy utilization, management, and optimization have been considered. In the event, all these topics were covered in the extensive submissions accepted, but interesting papers on other aspects of building energy efficiency were also received. The purpose of this editorial is to summarize the main research findings of accepted papers in this Special Issue, including the use of renewable energy and energy saving technologies in buildings and identify a number of research questions and research directions.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3