Evaluation of potential capabilities of energy savings and utilization of solar energy in mosques in Hail city, Kingdom of Saudi Arabia

Author:

Al-Anazi Mohamed A1,Almasri Radwan A2ORCID

Affiliation:

1. Program in Renewable Energy engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia

2. Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia

Abstract

Energy consumption is one of the most important variables that have an impact on the environment. One of the nations in the world with the highest per capita electrical energy usage is the Kingdom of Saudi Arabia. Many attempts are being made in Kingdom of Saudi Arabia to lower energy consumption and electricity consumption to achieve sustainability. In this work, the data on the energy consumption of two mosques in Hail City were analyzed, and the opportunities for energy conservation and the use of solar energy were studied to make mosques sustainable. Annual energy use intensity was determined to be 100 and 121 kWh/m2 for the Al-Khashil and Al-Jamil mosques, respectively. While Al-Khashil's mosque envelope is insulated, energy efficiency measures implemented to the walls, roof, and windows of Al-Jamil's mosque resulted in reductions in energy consumption of 27%, 13%, and 6%, respectively. The most effective energy efficiency option is a heating, ventilation, and air conditioning system with a high energy efficiency ratio, which can reduce cooling demand by more than 30%. If the condition of Saudi Building Code 601 is met, then it has the potential to cut energy usage by 35.4% and 63.3% for Al-Khashil and Al-Jamil, respectively. Due to coronavirus disease 2019, Al-Khashil's electricity usage was reduced by 58,737 kWh, or 39.9%, in 2020 compared to 2019. When using data from RETScreen and ATLAS, there were inconsistencies of up to 28%, but for DesignBuilder, the findings were the closest to the billing data. The mosques Al-Khashil and Al-Jamil have a combined yearly photovoltaic energy output from the suggested systems of around 135.93 MWh and 33.98 MWh, respectively. For the mosques, Al-Khashil and Al-Jamil, the yearly yield factor and capacity factor were both 1887.9 kWh/kWp/year and 21.9%, respectively. The annual greenhouse gas emission reductions from photovoltaic systems for Al-Khashil and Al-Jamil were 102.9 tCO2 and 25.72 tCO2, respectively. Concerning economics, the following results were obtained: The levelized cost of energy of photovoltaic systems is 0.0901 SR/kWh (0.024 $/kWh); the net present value and internal rate of return for photovoltaic systems are not suitable as a result of the current prices and the system applied in the Kingdom of Saudi Arabia. If the electricity produced from photovoltaic systems is injected into the grid at a rate of 0.32 SR/kWh, which is comparable to the SEC tariff for the mosque or government sector, then the simple payback time is 5.14 years.

Funder

Qassim University

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference54 articles.

1. Code-Residential, S.B.E.C. SBC 602. Riyadh, KSA, 2018: p. 64.

2. Degree Days Calculated Accurately for Locations Worldwide, https://www.degreedays.net/. 2022 [12 March 2022].

3. Guidelines for thermal insulation systems and materials according to the requirements of the Saudi Building Code. 2021, Saudi Energy Efficiency Center: An Nakheel, Riyadh, KSA. p. 67.

4. Modules, C.S. Available solar modules. Available from: https://www.canadiansolar.com/wpcontent/uploads/2019/12/Canadian_Solar-Datasheet-HiKu_CS3W-P_EN.pdf. [22 November 2022].

5. Saudi Arabia balance, I. https://www.iea.org/sankey/#?c=Saudi%20Arabia&s=Balance [04 July 2022].

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3