A semi-analytical two-phase flow model of fractured horizontal well with complex fracture networks in natural fractured reservoirs

Author:

Li Mengmeng1ORCID,Bi Gang1,Shi Yu1,Zhao Kai1

Affiliation:

1. College of Petroleum Engineering, Xi’an Shiyou University, China

Abstract

Complex fracture networks are easily developed along the horizontal wellbore during hydraulic fracturing. The water phase increases the seepage resistance of oil in natural fractured reservoir. The flow regimes become more intricate due to the complex fractures and the occurrence of two-phase flow. Therefore, a semi-analytical two-phase flow model is developed based on the assumption of orthogonal fracture networks to describe the complicate flow regimes. The natural micro-fractures are treated as a dual-porosity system and the hydraulic fracture with complex fracture networks are characterized explicitly by discretizing the fracture networks into multiple fracture segments. The model is solved according to Laplace transformation and Duhamel superposition principle. Results show that seven possible flow regimes are described according to the typical curves. The major difference between the vertical fractures and the fracture networks along the horizontal wellbore is the fluid “feed flow” behavior from the secondary fracture to the main fracture. A natural fracture pseudo-radial flow stage is added in the proposed model comparing with the conventional dual-porosity model. The water content has a major effect on the fluid total mobility and flow capacity in dual-porosity system and complex fracture networks. With the increase of the main fracture number, the interference of the fractures increases and the linear flow characteristics in the fracture become more obvious. The secondary fracture number has major influence on the fluid feed capacity from the secondary fracture to the main fracture. The elastic storativity ratio mainly influences the fracture flow period and inter-porosity flow period in the dual-porosity system. The inter-porosity flow coefficient corresponds to the inter-porosity flow period of the pressure curves. This work is significantly important for the hydraulic fracture characterization and performance prediction of the fractured horizontal well with complex fracture networks in natural fractured reservoirs.

Funder

National Natural Science Foundation of China

Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum

Natural Science Foundation of Shaanxi Province

the Scientific Research Program Funded by Shaanxi Provincial Education Department

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3