An overview of types and characterization of hot fluids associated with reservoir formation in petroliferous basins

Author:

Hu Wenxuan12,Wang Xiaolin12,Zhu Dongya3,You Donghua13,Wu Haiguang1

Affiliation:

1. School of Earth Sciences and Engineering, State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, China

2. Institute of Energy Sciences, Nanjing University, Nanjing, China

3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing, China

Abstract

Increasing petroleum explorations indicate that the formation of many reservoirs is in close association with deep hot fluids, which can be subdivided into three groups including crust-derived hot fluid, hydrocarbon-related hot fluid, and mantle-derived hot fluid. The crust-derived hot fluid mainly originates from deep old rocks or crystalline basement. It usually has higher temperature than the surrounding rocks and is characterized by hydrothermal mineral assemblages (e.g. fluorite, hydrothermal dolomite, and barite), positive Eu anomaly, low δ18O value, and high 87Sr/86Sr ratio. Cambrian and Ordovician carbonate reservoirs in the central Tarim Basin, northwestern China serve as typical examples. The hydrocarbon-related hot fluid is rich in acidic components formed during the generation of hydrocarbons, such as organic acid and CO2, and has strong ability to dissolve alkaline minerals (e.g. calcite, dolomite, and alkaline feldspar). Extremely 13C-depleted carbonate cements are indicative of the activities of such fluids. The activities of hydrocarbon-related hot fluids are distinct in the Eocene Wilcox Group of the Texas Gulf Coast, and the Permian Lucaogou Formation of the Jimusaer Sag and the Triassic Baikouquan Formation of the Mahu Sag in the Junggar Basin. The mantle-derived hot fluid comes from the upper mantle. The activities of mantle-derived hot fluids are common in the rift basins in eastern China, showing a close spatial relationship with deep faults. This type of hot fluid is characterized by high CO2 content, unique gas compositions, and distinct noble gas isotopic signatures. In the Huangqiao gas field of eastern China, mantle-derived CO2-rich hot fluids have created more pore spaces in the Permian sandstone reservoirs adjacent to deep faults.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3