Numerical analysis of drainage rate for multilayer drainage coalbed methane well group in Southern Qinshui basin

Author:

Hu Qiujia1,Liu Shiqi2ORCID,Sang Shuxun3,Fang Huihuang3ORCID,Tripathy Ashutosh3,Yan Ling1,Qin Mengfu1,Mao Chonghao1

Affiliation:

1. Shanxi CBM Branch of PetroChina Co. Ltd., Changzhi, China

2. Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, China

3. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process (Ministry of Education), School of Mineral Resource and Geoscience, China University of Mining and Technology, Xuzhou, China

Abstract

Multilayer drainage is one of the important technologies for coalbed methane (CBM) production in China. In this study, a multi-field fully coupled mathematical model for CBM production was established to analyze the multilayer drainage of CBM well group in southern Qinshui basin. Based on the numerical simulation results, the characteristics of CBM well production under different drainage rates and key factors influencing the CBM production were further discussed. The results show that the effect of an increased drainage rate on gas production of CBM wells and CBM recovery of No.3 coal seam is not significant. However, it significantly improved the gas production of CBM wells and CBM recovery of No.15 coal seam. After a long period of production, the CBM content in No.3 coal seam has reduced to a low level and the pressure drop potential of No.3 coal seam is insignificant, which are important reasons for the insignificant increase of CBM production even under a drainage rate of 2 to 7 times. Conversely, No.15 coal seam has larger residual CBM content and increasing the drainage rate can significantly improve the pressure drop and superimposed well interference of No.15 coal seam, which means No.15 coal seam has greater production potential than No.3 coal seam. Therefore, it is recommended to improve the gas production and CBM recovery in No.15 coal seam by increasing the drainage rate, and the average hydraulic pressure drop should be 0.018–0.031 MPa/day. The influence of effective stress is weak in No.3 and No.15 coal seam, and the coal seam permeability is largely influenced by the shrinkage of coal matrix caused by CBM desorption. This indicates the feasibility of increase in gas production from CBM wells by increasing the drainage rate.

Funder

National Natural Science Foundation of China

Major Science and Technology Foundation of PetroChina Co. Ltd.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3