Affiliation:
1. Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
2. Department of Mechanical Engineering, Bahauddin Zakariya University, Multan, Pakistan
Abstract
Continuous probability distributions have long been used to model the wind data. No single distribution can be declared accurate for all locations. Therefore, a comparison of different distributions before actual wind resource assessment should be carried out. Current work focuses on the application of three probability distributions, i.e. Weibull, Rayleigh, and lognormal for wind resource estimation at six sites along the coastal belt of Pakistan. Four years’ (2015–2018) wind data measured each 60-minutes at 50 m height for six locations were collected from Pakistan Meteorological Department. Comparison of these distributions was done based on coefficient of determination ( R2), root mean square error, and mean absolute percentage deviation. Comparison showed that Weibull distribution is the most accurate followed by lognormal and Rayleigh, respectively. Wind power density ( PD) was evaluated and it was found that Karachi has the highest wind speed and PD as 5.82 m/s and 162.69 W/m2, respectively, while Jiwani has the lowest wind speed and PD as 4.62 m/s and 76.76 W/m2, respectively. Furthermore, feasibility of annual energy production (AEP) was determined using six turbines. It was found that Vestas V42 shows the worst performance while Bonus 1300/62 is the best with respect to annual energy production and Bonus 600/44 is the most economical. Finally, sensitivity analysis was carried out.
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献