A new three-dimensional wake model for the real wind farm layout optimization

Author:

Luo Zhaohui1ORCID,Luo Wei1,Xie Junhang1,Xu Jian1,Wang Longyan12

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu Province, China

2. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

The utilization of wind energy has attracted extensive attentions in the last few decades around the world, providing a sustainable and clean source to generate electricity. It is a common phenomenon of wake interference among wind turbines and hence the optimization of wind farm layout is of great importance to improve the wind turbine yields. More specifically, the accuracy of the three-dimensional wake model is critical to the optiamal design of a real wind farm layout considering the combinatorial effect of wind turbine interaction and topography. In this paper, a novel learning-based three-dimensional wake model is proposed and subsequently validated by comparison to the high-fidelity wake simulation results. Moreover, due to the fact that the inevitable deviation of actual wind scenario from the anticipated one can greatly jeopardize the wind farm optimization outcome, the inaccuracy of wind condition prediction using the existing meteorologic data with limited-time measurement is incorporated into the optimization study. Different scenarios including short-, medium-, and long-term wind data are studied specifically with the wind speed/direction prediction errors of [Formula: see text] 0.25 m/s, [Formula: see text] 5.62 [Formula: see text], [Formula: see text] 0.08 m/s, [Formula: see text] 1.75 [Formula: see text] and [Formula: see text] 0.025 m/s, [Formula: see text] 0.56 [Formula: see text], respectively. An advanced objective function which simultaneously maximizes the power output and minimizes the power variance is employed for the optimization study. Through comparison, it is found that the optimized wind farm layout yields over 210 kW more total power output on average than the existed wind farm layout, which verifies the effectiveness of the wind farm layout optimization tool. The results show that as the measurement time for predicting the wind condition gets longer, the total wind farm power output average increases while the error of power output prediction decreases. For the wind farm with 20 wind turbines installed, the individual power output is above 500 kW with an error of 90 kW under the short-term wind [Formula: see text] 0.25 m/s, [Formula: see text] 5.62 [Formula: see text], while it is above 530 kW with an error of 10 kW under the long-term wind [Formula: see text] 0.025 m/s, [Formula: see text] 0.56 [Formula: see text].

Funder

Postdoctoral Science Foundation of Jiangsu Province

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Australia Endeavour Scholarships and Fellowships, and Canada Future Energy Systems Program

High-level Talent Research Foundation of Jiangsu University

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3