Robust adaptive analysis of extreme dynamic responses of wave energy converters

Author:

Wang Yingguang12ORCID

Affiliation:

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China

2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China

Abstract

In the current study, a new adaptive binned kernel density estimation method has been introduced. In the proposed new method, Fourier transforms have been utilized to accomplish the convolution rather than performing the convolution by hand. By utilizing the fast Fourier transform, direct and inverse Fourier transforms have been found in a relatively short amount of time when implementing the new method. Upon analyzing the computed results, it has been observed that the newly proposed adaptive binned kernel density estimation distribution curve exhibits a high level of smoothness in the tail region. Furthermore, it demonstrates a strong alignment with the histogram derived from the recorded ocean wave dataset obtained at the NDBC station 46053. These are the major advantages of the proposed new method comparing with other existing methods such as the parametric method, the ordinary KDE method, and Abramson's adaptive KDE method. The specific research gap identified in the field is that none of the existing methods can predict the sea state parameter probability distribution tails both accurately and efficiently, and the proposed new method has successfully addressed this research gap. Upon careful examination of the calculation results, it becomes evident that the projected 50-year extreme power-take-off heaving force value, derived using the newly proposed method, is 1989300N. This value significantly surpasses (by more than 9.5%) the forecasted value of 1816200N obtained through the application of the Rosenblatt-I-SORM contour method. The findings of this study suggest that the newly proposed adaptive binned kernel density estimation method exhibits robustness and demonstrates accurate forecasting capabilities for the 50-year extreme dynamic responses of wave energy converters.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3