The gas content distribution of coal reservoir at the Changzhi block, south-central Qinshui Basin, North China: Influences of geologic structure and hydrogeology

Author:

Du Zhigang123ORCID,Zhang Xiaodong14,Huang Qiang3,Zhang Shuo1,Wang Chenlin1

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, China

2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education (China University of Mining and Technology), Xuzhou, China

3. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, China

4. Collaborative Innovation Center of Coalbed Methane (Shale Gas) in Central Plains Economic Zone, Jiaozuo, China

Abstract

Coalbed methane is now large-scalely explorated and exploitated in the world. The Changzhi coalbed methane block, south-central Qinshui Basin, is a new resource target zone for coalbed methane exploration and exploitation in China. However, the gas content distribution of this block and its influential factors have not yet studied. Based on the recent coalbed methane exploration and exploitation activities, the gas content distribution of coal reservoir in this block was studied. The results show that the gas content hold by the coal reservoir is 7.0 − 21.7 m3/t, which was determined by a combining control effect from geologic structure and hydrogeology. The Changzhi coalbed methane block has experienced multiple-stages geologic structure evolution, especially a tectonic-thermal event during the middle Yanshanian Orogeny improved the coal to the current R o,max 1.9 − 2.7% and meanwhile the coalbed methane was greatly generated. Subsequently, the widespreadly developed normal fault structures during the Himalayan Orogeny accelerated the coalbed methane escape through the “gas escape windows”, particularly where the location within the distance of about 1300 m to the “gas escape window” the gas content decreases significantly. Moreover, due to the action of the later Himalayan Orogeny, the slope areas of most Yanshanian fold structures were structurally cross-cut by the Himalayan normal faults, and thus an “open” syncline folds were formed. The coal reservoir was depressurized surrounding this “open” syncline structure and consequently the hydrodynamic losing effect has resulted in a comparatively lower gas content therein. By the control of geologic structure and hydrogeology, this block can be generally, compartmentalized into three hydrodynamic systems including the western groundwater stagnation region, the middle runoff region, and the north-eastern recharge region, where the hydrodynamic sealing effect at the groundwater stagnation region has made a comparatively higher gas content for the coal reservoir, but the hydrodynamic losing effect at the recharge region and runoff region has made a comparatively lower gas content of the coal reservoir.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3