Theoretic and experimental performance of a grid-connected photovoltaic system: Multiple prediction model of efficiency and annual energy generation

Author:

Rivera-Martínez Mario Arturo1,García-López María Adriana1,Alanís-Navarro José Andrés1ORCID,Fuentes-Pérez Marcos2,Lavín-Delgado Jorge Enrique3

Affiliation:

1. Laboratorio de Ecotecnologías, Universidad Politécnica del Estado de Guerrero, Taxco de Alarcón, Guerrero, México

2. Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México

3. Departamento de Redes y Telecomunicaciones, Universidad Politécnica del Estado de Guerrero, Taxco de Alarcón, Guerrero, México

Abstract

In this article, the performance of a 3.36 kWp grid-connected photovoltaic system (GCPVS) under warm and subhumid weather conditions and the development of a predictive mathematical model is presented. Climate data of the 2021 year were used to evaluate energy generation, different types of performance, and efficiency. The average annual yield, corrected yield, array, and final yields were 6.45 h/day, 6.18 h/day, 5.16 h/day, and 4.97 h/day, respectively. The overall annual mean capacity factor and efficiency ratios were 20.73% and 77.22%, correspondingly. Experimental data were analyzed and correlated by multivariate linear regression (MLR) prediction and simulation to validate models. The MLR analysis showed that the efficiency is highly dependent on the temperature of the PV modules and that climatic parameters significantly affect the efficiency and output electric power. The prediction models for PV module efficiency, system efficiency, and direct current energy exhibit an uncertainty of ±1.04%, ±0.57%, and ±35.38 kWh, one-to-one. The monthly generation was compared with results obtained by Energy3D simulation-free software, showing an absolute error of ±2.33 kWh. This information can be used as a methodological tool for predicting efficiency and power generation in direct current.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3