Affiliation:
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, China
2. Oil & Gas Survey, China Geological Survey, Ministry of Natural Resources, China
3. The Key Laboratory of Unconventional Petroleum Geology, China Geological Survey, Ministry of Natural Resources, China
4. Guangzhou Marine Geology Survey, China Geological Survey, Ministry of Natural Resources, China
5. College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, China
Abstract
Methylated 2-methyl-2-(4,8,12-trimethyltridecyl)chromans are salinity-sensitive biomarkers that have been detected in immature – early mature petroleum and sediments. In this study, the occurrence and distribution patterns of 2-methyl-2-(4,8,12-trimethyltridecyl)chromans were investigated in a set of lacustrine sediments from Nördlinger Ries of southern Germany and marine sediments from the South China Sea. Among all of the 2-methyl-2-(4,8,12-trimethyltridecyl)chroman isomers detected, 8-Me-2-methyl-2-(4,8,12-trimethyltridecyl)chroman presented with high abundance in sediments deposited in hypersaline environments, while absent in samples from normal marine environments. In contrast, 5,7,8-triMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman was more enriched in sediments from marine environments. This study also showed that the ratio of 5,7,8-triMe-/5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman can be applied as a potential salinity indicator on account of a positive correlation with other 2-methyl-2-(4,8,12-trimethyltridecyl)chroman salinity indicators. This ratio can be an alternative indicator of paleosalinity when 8-Me-2-methyl-2-(4,8,12-trimethyltridecyl)chroman is absent or present in quite low abundance. The content of 2-methyl-2-(4,8,12-trimethyltridecyl)chroman isomers may be affected by freshwater supply and lithology. Molecular simulations showed that 5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman has a higher thermal dynamic stability than 7,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman. Thus, the ratio of 5,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman/7,8-diMe-2-methyl-2-(4,8,12-trimethyltridecyl)chroman may be a potential maturity parameter for sediments at a low thermal mature stage.
Funder
China Geological Survey
Guangzhou Science and Technology Program key projects
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment