Effective virtual inertia control using inverter optimization method in renewable energy generation

Author:

Niu Shuanbao1,Qu Linan2,Lin Hsiung-Cheng3ORCID,Fang Wanliang4

Affiliation:

1. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China; Northwest Branch of State Grid Corporation of China, Xi’an, China

2. China Electric Power Research Institute (Nanjing), Nanjing, China; School of Electrical Engineering, Hebei University of Technology, Tianjin, China

3. Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung

4. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

The high-level penetration of intermittent renewable power generation may limit power system inertia, resulting in system frequency instability in increasing power converter-based energy sources. To resolve this problem, virtual inertia control using distributed gray wolf optimization (DGWO) method in a synchronous generator is simulated under a distinct output fluctuation condition. First, the DGWO algorithm was established to achieve a local and global balance solution, and standard test functions were employed to verify the model convergence. Second, the key parameters that determine the effect of the virtual inertia controller in the power grid were analyzed. A DGWO-based optimization strategy to stabilize inertia was also developed. Finally, simulation results using step and random loads under a high permeability level are provided to verify the effectiveness of the proposed model. In the step load disturbance, the system can recover from the disturbance point to the stable point after 3 s under the regulation of the proposed control strategy, which is reduced by 18 s compared with the traditional control method. In the random load test, it takes only 12 s, 63 s less than the traditional one. Accordingly, the power system frequency can be stabilized more quickly from a disturbance state to a stable stage.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3