A spatial perspective on renewable energy optimization: Case study of southern Tunisia Using GIS and multicriteria decision making

Author:

Rekik Sassi1,El Alimi Souheil1ORCID

Affiliation:

1. National Engineering School of Monastir, Laboratory of Thermal and Energy Systems Studies (LESTE), University of Monastir, Monastir, Tunisia

Abstract

Renewable energy systems have emerged as a viable option to mitigate the environmental impacts of traditional fossil fuels. However, the intermittent nature of these renewables, such as solar and wind, makes it challenging to ensure a stable energy supply using only one type. Therefore, combining more than a single technology offers significant advantages in addressing the limitations associated with each individual system. Nevertheless, developing these systems requires substantial financial investments, making it crucial to identify the most suitable locations prior to installing them. In this article, the prime objective was to propose a preliminary evaluation of land suitability for constructing solar and wind hybrid facilities (PV–wind, PV–CSP, and CS–wind) in Tataouine, southern Tunisia. To this end, a GIS-based MCDA methodology was developed based on an extensive literature review and experts’ feedback while considering climate, topography, accessibility, and environmental factors. The results obtained revealed that the optimal area for a CSP–PV hybrid system is about 793 km2, indicating that this combination has the highest potential in terms of available resources and compatibility. On the other hand, well-suited locations for hosting CSP–wind and PV–wind systems covered areas of 412 and 333 km2, respectively. Such specific locations are capable of generating an annual technical potential of 316.169, 91.252, and 62.970 TWh for CSP–PV, CSP–wind, and PV–wind, respectively. Interestingly, comprising almost all of the most appropriate sites, Remada and Dhiba stand as the ideal locations for accommodating such hybrid systems. Considering this outcome, Tataouine can position itself as a model for renewable energy adoption in Tunisia. Therefore, it is imperative for policymakers, investors, and local communities to collaborate and embrace these hybrid systems to capitalize on this immense potential and pave the way for a greener and more prosperous future.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3