Affiliation:
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
2. CCDC Geological Exploration & Development Research Institute, Chengdu, China
Abstract
In order to study the distributions of the biomarker of the continental source rocks in the Sichuan Basin, 71 source rock samples were collected from the Upper Triassic-Lower Jurassic strata in different regions. The n-alkanes, isoprenoids, terpane, sterane, sesquiterpenes, caranes and aromatics in the extracts were analyzed in detail. GC-MS analysis has been conducted to analyze the biomarker of the continental source rocks. The results of GC-MS analysis indicate that the Upper Triassic source rocks are high in the content of extended tricyclic terpanes, pristane, phytane, gammacerane, C28 regular sterane and carotene. However, they are low in content of rearranged compounds. The ratio of Pr/Ph is less than 1, with the characteristics of tricyclic terpane C21 > C23. The Lower Jurassic source rocks are extremely low in content (even zero) of extended tricyclic terpanes, pristane, phytane, gammacerane, C28 regular sterane and carotene, and high in content of rearranged compounds. The ratio of Pr/Ph is more than 1, with tricyclic terpane C21 > C23. These characteristics are still preserved after maturation. Moreover, during the sedimentation of the source rocks of T3x2–T3x3 members, the supply of continental plants was low (TAR < 1, with regular sterane C27 > C29, 1-MP/9-MP < 1). The source rocks of T3x5 member were low in salinity (slightly low content of gammacerane and carotene), being different significantly from the other Upper Triassic source rocks. In addition, during the sedimentation of the source rocks of J1dn Member, the supply of continental plants was also low (regular sterane C27 > C29, 1-MP/9-MP < 1), being quite different from that of J1l member. Through analysis of the difference in biomarkers, it is indicated that the sedimentary environment had changed from anoxic and brackish water during the Late Triassic to oxygen-rich and freshwater during the Early Jurassic in the Sichuan Basin. During this process, the types of organic matters had changed for several times.
Funder
Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
National Natural Science Foundation of China
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献