Affiliation:
1. School of Economics and Management, Anhui University of Science and Technology, Huainan, China
2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China
Abstract
As a new collaborative mining technology, the integration of mining-separating-backfilling (IMSB) enables the coal industry to realize safe, efficient, and green mining of coal resources at the expense of making the underground coal mine production more complex. In coal mining, the primary problem is to eliminate the production logistics system bottleneck to increase coal output. The key to synergetic mining is to realize that the mining capacity of the fully mechanized face should match the underground raw coal separating and gangue backfilling capacities. Considering a coal mine with IMSB in Henan Province, AnyLogic simulation software was used to simulate and optimize the production logistics system based on a generalized stochastic Petri net (GSPN). The main simulation results show that: (1) the raw coal separating capacity of this deep mine matches its mining capacity, and the gangue backfilling capacity can almost meet the demand for backfilling after raw coal mining; (2) belt conveyors 1 and 6 are the transportation bottlenecks of increasing production in the mine, and the lifting capacity of the main shaft is insufficient; (3) after optimization, the clean coal output of this coal mine increased by 3087 t monthly. This research promotes synergetic mining in the coal industry and can serve as a reference for the optimization of similar coal mine production logistics systems.
Funder
National Natural Science Foundation of China
Academic Funding Projects for Top Talents in Disciplines and Majors of Anhui
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献