A multi-energy load prediction of a building using the multi-layer perceptron neural network method with different optimization algorithms

Author:

Yan Zhongzhen1,Zhu Xinyuan1,Wang Xianglong1,Ye Zhiwei1,Guo Feng2,Xie Lei34,Zhang Guiju5ORCID

Affiliation:

1. School of Computer Science and Technology, Hubei University of Technology, Wuhan, China

2. China Railway Seventh Bureau Group Electrical Engineering Co. Ltd, Zhengzhou, China

3. Intelligent Transport Systems Research Center (ITSC), Wuhan University of Technology, Wuhan, China

4. National Engineering Research Centre for Water Transport Safety (WTSC), Wuhan, China

5. Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Hunan, China

Abstract

Since cooling and heating loads are recognized as key characteristics for evaluating the energy efficiency of buildings, it appears indisputable that they must be predicted and analyzed for residential structures. Accordingly, the multi-layer perceptron neural network is applied for predicting the heating and cooling loads using the experimental dataset. The used dataset is obtained by monitoring the impact of the building's dimensions on energy consumption. To optimize the training process of the multi-layer perceptron neural network, several optimizers are employed. Besides, different statistical performance indicators are considered to see which selected optimizer outperforms the rest in terms of accuracy and authenticity. The obtained results emphasize the remarkable performance of adaptive chaotic grey wolf optimization, which can be used to train the multi-layer perceptron neural network and forecast the buildings’ energy consumption with the highest accuracy. According to the obtained results, the hybrid multi-layer perceptron neural network- adaptive chaotic grey wolf optimization method demonstrates the best performance. The optimum number of neurons in the hidden layer is obtained to be 15. Also, based on the statistical performance indicators, the selected method reveals an R2 of 0.9123 and 0.9419 for cooling and heating loads, respectively.

Funder

National Key Technologies Research & Development Program

by the key Area Reseach and Development Program of Guangdong province

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3