Sustainable solar energy potential on marine passenger ships of Bay of Bengal: A way of reducing carbon dioxide emissions and disaster risk reduction

Author:

Abdullah-Al-Mahbub Md12ORCID,Towfiqul Islam Abu Reza Md.1,Alam Edris34,Asha Mahbuba Redowan1

Affiliation:

1. Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh

2. Dr. Wazed Research and Training Institute, Begum Rokeya University, Rangpur, Bangladesh

3. Faculty of Resilience, Rabdan Academy, Abu Dhabi, UAE

4. Department of Geography and Environmental Studies, University of Chittagong, Chttagong, Bangladesh

Abstract

In Bangladesh, there are roughly 31 marine passenger ships that are in operation. These ships might be a good location for solar photovoltaic (PV) plants since solar energy is the best renewable energy to replace the fossil fuel used in the ships. A “tower rounded flower-shaped solar PV” system of PV panel arrangement—just looks like a “sunflower,” is proposed in this research. To harness maximum power, solar towers are designed in such a way that they may be freely rotated on their vertical axes and that the tilt angles of their solar panels can be adjusted from 0° to 50° on their horizontal axes freely. The “tower rounded flower-shaped solar PV” architecture of the PV array atop a maritime vessel is presented in this research along with a unique method for calculating the PV system's anticipated energy production. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Applying globalsolaratlas (for horizon and sun's path estimation); PVsyst 7.2, HOMER Pro, and NREL's PVWatt calculator (for solar radiation calculation); vesselfinder (for the number of vessels analysis); shiptraffic (for vessels path analysis), this research suggests that marine passenger vessels are one of the best places to construct a proposed “tower rounded flower-shaped solar PV” power plant. According to estimates, 17 passenger ships can produce roughly 1240 MW of electricity per year and may save approximately 325.56 tons of CO2 gas emissions annually to the environment per year as compared to using fossil fuel-based power plants to produce electricity.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3