Experimental investigation on effect of loading rate on fracture behavior of coal-seam roof rock

Author:

Chen Lichao1,Lyu Shuaifeng2ORCID,Guo Zhang3,Xiao Yuhang4

Affiliation:

1. School of Mining Technology, Inner Mongolia University of Technology, Hohhot, China

2. School of Earth Resources, China University of Geosciences, Wuhan, China

3. Inner Mongolia Zhongtai Energy Co., Ltd, Erdos, China

4. PetroChina Huabei Oilfield Company, Renqiu, China

Abstract

The fracture behavior of coal-seam roof rock in coal mining is a key and controlling factor for the mode optimization of the artificial roof caving. However, the fracture mechanism of roof rock under loading is not clear. In the work, the split Hopkinson pressure bar (SHPB) experiment was carried out using semicircular bending samples from the sandstone of coal-seam roof rock in the Junger mining area of Inner Mongolia at the loading rate of 0.35–3.78 GPa·m0.5·s−1, and the dynamic fracture behavior and energy dissipation mechanism of samples under different loading rates were investigated. The result shows that the dynamic stress–strain process of the hard roof rock includes four stages: linear instantaneous compaction, linear elastic compression, failure, and fracture extension, in which the failure forms changes from brittle fracture to ductile fracture with the increase of loading rate. The mode I fracture toughness increases linearly under confining pressure. In addition, the propagation orientation of induced fractures is parallel to the loading direction, and the gravel in the samples can inhibit fracture extension, resulting in changing the fracture extension path. Further, the energy absorption efficiency of the samples during the fracture process decreases with the increase in the loading rate.

Funder

Coalbed Methane Joint Research Fund of Shanxi Province

Inner Mongolia Science and Technology Project

Key Research and Development Plan Project of Jincheng City

the National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3