Characteristics and quantitative study on gas breakthrough in developing Yaha-2 condensate gas reservoir in Tarim Basin, China

Author:

Xia Jing1,Liu Pengcheng2,Jiao Yuwei1,Dong Mingda3,Zhang Jing1,Zhang Jiucun4

Affiliation:

1. Research Institute of Petroleum Exploration and Development of CNPC, Beijing, China

2. School of Energy Resources, China University of Geosciences, Beijing, China

3. China University of Petroleum, Beijing, China

4. Tarim Oilfield Subsidiary Company of PetroChina, Korla, China

Abstract

In order to keep the formation pressure be larger than the dew-point pressure to decrease the loss of condensate oil, cyclic gas injection has been widely applied to develop condensate gas reservoir. However, because the heterogeneity and the density difference between gas and liquid are significant, gas breakthrough appears during cyclic gas injection, which apparently impacts the development effects. The gas breakthrough characteristics are affected by many factors, such as geological features, gas reservoir properties, fluid properties, perforation relations between injectors and producers, and operation parameters. In order to clearly understand the gas breakthrough characteristics and the sensitivity to the parameters, Yaha-2 condensate gas reservoir in Tarim Basin was taken as an example. First, the gas breakthrough characteristic of different perforation relations by injecting natural gas was studied, and the optimal relation was achieved by comparing the sweep efficiency. Then, the designs of orthogonal experiments method were employed to study the sensitivity of gas breakthrough to different parameters. Meanwhile, the characteristic parameters, such as gas breakthrough time, dimensionless gas breakthrough time, and sweep volume, were calculated and the prediction models were achieved. Finally, the prediction models were applied to calculate the gas breakthrough time and sweep volume in Yaha-2 condensate gas reservoir in Tarim Basin. The reliability of the model was verified at the same time. Please see the Appendix for the graphical representation of the abstract.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3