Artificial neural network-based data imputation for handling anomalous energy consumption readings in smart homes

Author:

Purna Prakash Kasaraneni1,Kumar Yellapragada Venkata Pavan2ORCID,Ravindranath Kongara1,Pradeep Reddy Gogulamudi3,Amir Mohammad4,Khan Baseem5

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India

2. School of Electronics Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

3. Special Communication and Convergence Service Research Center (SCRC), Kookmin University, Sungbuk-Gu, Seoul, South Korea

4. Department of Electrical Engineering, Indian Institute of Technology (IIT), Delhi, India

5. Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia

Abstract

Smart homes are at the forefront of sustainable living, utilizing advanced monitoring systems to optimize energy consumption. However, these systems frequently encounter issues with anomalous data such as missing data, redundant data, and outliers data which can undermine their effectiveness. In this paper, an artificial neural network (ANN)-based approach for data imputation is specifically designed to deal with the anomalies in smart home energy consumption datasets. Our research harnesses the power of ANNs to model intricate patterns within energy consumption data, enabling the accurate imputation of missing values while detecting and rectifying anomalous data. This approach not only enhances the completeness of the data but also augments its overall quality, ensuring more reliable results. To evaluate the effectiveness of our ANN-based imputation method, comprehensive experiments were conducted using real-world smart home energy consumption datasets. Our findings demonstrate that this approach outperforms traditional imputation techniques like mean imputation and median imputation in terms of accuracy. Furthermore, it showcases adaptability to diverse smart home scenarios and datasets, making it a versatile solution for improving data quality. In conclusion, this study introduces an advanced data imputation technique based on ANNs, tailor-made for addressing anomalies in smart home energy consumption data. Beyond merely filling data gaps, this approach elevates the dataset's reliability and completeness, thereby facilitating a more precise analysis of energy consumption and supporting informed decision-making in the context of smart homes and sustainable energy management. Ultimately, the proposed method has the potential to contribute considerably to the ongoing evolution of smart home technologies and energy conservation efforts.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3