Operational Optimisation of Grid-Connected Microgrids Incorporating Hybrid Energy Storage and Demand Response

Author:

Gbadegesin Azizat O12,Sun Yanxia3,Nwulu Nnamdi I1ORCID

Affiliation:

1. Centre for Cyber-Physical Food Energy & Water Systems, University of Johannesburg, Johannesburg, South Africa

2. ICLEI Africa, Cape Town, South Africa

3. Department of Electrical and Electronics Engineering Science, University of Johannesburg, Johannesburg, South Africa

Abstract

Storage systems are needed to boost the reliability of intermittent solar and wind resources in power networks. Rather than focus on one storage system or one hybrid energy storage system (HESS), this work models the operation of six HESS configurations in a Renewable Energy (RE) based grid-tied network. The objective is to minimise the daily operational costs of the microgrid while prolonging the storage lifetime by considering storage degradation costs. The influence of fixed tariffs and time-of-use (TOU) tariffs on the optimal operational of the HESS configurations have also been investigated; as well as deferrable demand satisfaction, charge-discharge pattern of different HESS and availability of the power-dense storage system within the microgrid. Results show that the lead-acid battery and hydrogen fuel cell (HFC) HESS incurs the highest operational costs, while the supercapacitor-lead-acid battery HESS incurs the lowest operational costs. The supercapacitor-lead acid battery and the supercapacitor-HFC HESS incur the highest annual storage degradation costs. The grid expenses were seen to be the same for all HESS under each tariff scheme. Lastly, decreasing the minimum storage level further by 10% from the 30% in the base case, led to an increase in the number of hours of availability of the power-dense storage system of five of the six HESS. These results have given a deeper understanding to the operation of HESS systems and can inform better decision making of the suitable HESS to be deployed in different operating scenarios.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3