The differences between the measured heat flow and BSR heat flow in the Shenhu gas hydrate drilling area, northern South China Sea

Author:

Dong Miao1,Zhang Jian1ORCID,Xu Xing2,Wu Shi-Guo134

Affiliation:

1. University of Chinese Academy of Sciences, Beijing, China

2. Guangzhou Marine Geological Survey, Guangzhou, China

3. Lab of Marine Geophysics & Geo-resources, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China

4. Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Abstract

Temperature is an important factor that affects the stability of a gas hydrate. To investigate the geothermal characteristics in the gas hydrate drilling area, heat flow measurements were performed in the surrounding area of the SH2 well. The measured heat flow was compared with the bottom simulating reflector heat flow, which was calculated by using the depth of the bottom simulating reflector in the seismic data. Combined with the geological background of the Shenhu drilling area, we analyzed the reasons for the differences between the measured heat flow and the bottom simulating reflector heat flow. In addition to analyzing the differences caused by the calculation parameters, we calculated the 3-D topographic effects on the measured heat flow by using the finite element numerical simulation method. The results show that the measured heat flow was seriously affected by the topography and produced a −50–30% error in the study area. After terrain correction of the measured heat flow, we found that the data were greater than the bottom simulating reflector heat flow at almost all sites. Therefore, we considered the impact of fluid activity and calculated the relationship among the thickness of the gas hydrate stability zone, the fluid flux and the heat flow. The results show that when the base of the bottom simulating reflector was at a certain depth, the geothermal gradient increased with the increasing upward migration of the fluid flux. Therefore, when upward fluid migration is present, the measured heat flow in the seafloor sediments is greater than the heat flow in the deep layers. In general, we showed that the influences of the topography and fluid activity are the main factors leading to the inconsistency between the bottom simulating reflector heat flow and the measured heat flow in the Shenhu gas hydrate drilling area.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3