Gas hydrate in-situ formation and dissociation in clayey-silt sediments: An investigation by low-field NMR

Author:

Sun Xiaoxiao123ORCID,Qin Xuwen12,Lu Hongfeng12,Wang Jingli12,Xu Jianchun4,Ning Zijie12

Affiliation:

1. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, P. R. China

2. Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, P. R. China

3. School of Energy Resources, China University of Geosciences (Beijing), Beijing, P. R. China

4. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, P. R. China

Abstract

The hydrate reservoir in the Shenhu Area of the South China Sea is a typical clayey-silt porous media with high clay mineral content and poor cementation, in which gas hydrate formation and dissociation characteristics are unclear. In this study, the CO2 hydrate saturation, growth rate, and permeability were studied in sandstone, artificial samples, and clayey-silt sediments using a custom-built measurement apparatus based on the low-field NMR technique. Results show that the T2 spectra amplitudes decrease with the hydrate formation and increase with the dissociation process. For the artificial samples and Shenhu sediments, the CO2 hydrate occupies larger pores first and the homogeneity of the sandstone pores becomes poor. Meanwhile, compared with the clayey-silt sediments, CO2 hydrate is easier to form and with higher hydrate saturation for the sandstone and artificial samples. In hydrate dissociation process, there exists a protection mechanism, i.e. the dissociation near the center of hydrates grain is suppressed when gas pressure drops suddenly and quickly. For permeability of those samples, it decreased with hydrate forms, and increases with hydrate dissociation. Meanwhile, with the same hydrate saturation, permeability is higher in hydrate formation than in dissociation.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3