A new fracture permeability model of CBM reservoir with high-dip angle in the southern Junggar Basin, NW China

Author:

Yang Shiyu12,Cai Yidong12ORCID,Wei Ren12,Zhou Yingfang3

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing, China

2. Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization, School of Energy Resources, China University of Geosciences, Beijing, China

3. School of Engineering, Fraser Noble Building, King’s College, University of Aberdeen, Aberdeen, UK

Abstract

Predicting the permeability of coalbed methane (CBM) reservoirs is significant for coalbed methane exploration and coalbed methane development. In this work, a new fracture permeability model of coalbed methane reservoir with high-dip angle in the southern Junggar Basin, NW China is established based on the Poiseuille and Darcy laws. The fracture porosity in coalbed methane reservoir is calculated by applying 3D finite element method. The formation cementing index m was calculated by combining fractal theory and the data of acoustic logging, compensated neutron logging, and density logging with the space method. Based on Poiseuille and Darcy laws, the curvature τ is introduced to derive this new method for obtaining the permeability of the original fractures in coalbed methane reservoirs. Moreover, this newly established permeability model is compared with the permeability from the well testing, which shows a very good correlation between them. This model comprehensively includes the effects of fracture porosity, reservoir pore structure, and development conditions on fracture permeability. Finally, the permeability prediction of coalbed methane reservoir with high-dip angle in the southern Junggar Basin, NW China is conducted, which correlates very well with the well test permeability ( R2 = 0.83). Therefore, this model can be used to accurately predict the coalbed methane reservoir permeability of low rank coals in the southern Junggar Basin. The permeability of the No.43 coalbed methane reservoir for the coalbed methane wells without well testing data is evaluated, which ranges from 0.000251 to 0.379632 mD. This significant change in permeability may indicate a complex coalbed methane reservoir structure in the southern Junggar Basin, NW China.

Funder

National Major Research Program for Science and Technology of China

National Natural Science Fund of China

Royal Society International Exchanges-China NSFC Joint Project

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3