Techno-economic analysis of intermediate hydrocarbon injection on coupled CO2 storage and enhanced oil recovery

Author:

Cho Jinhyung1,Jeong Moon S2,Lee Young W2,Lee Hye S2,Lee Kun S2ORCID

Affiliation:

1. Severe Storm Research Center, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea

2. Department of Earth Resources and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, Republic of Korea

Abstract

This study proposes economic evaluation of CO2 geological storage with enhanced oil recovery. The procedures consider capital expenditures and operating costs of infrastructures and revenues from oil recovery and carbon tax credits. Extensive CO2 geological storage with enhanced oil recovery simulations was conducted to determine the most promising scenario among cases, where miscibility was controlled by the addition of liquefied petroleum gas. The addition of liquefied petroleum gas into a CO2 injection stream can accelerate reduction of oil viscosity, interfacial tension, and oil density, which cause improved displacement efficiency. The larger was the amount of liquefied petroleum gas injected, the greater was the miscibility due to minimum miscibility pressure reduction, resulting in higher oil recovery and less CO2 sequestration. Although liquefied petroleum gas addition enhances the performance of CO2 enhanced oil recovery, economic analysis should be conducted for CO2 geological storage with enhanced oil recovery due to the higher price of liquefied petroleum gas than that of CO2. Net present value decreased from liquefied petroleum gas mole fraction of 0–2% and started to increase from mole fraction 2–13% due to the miscibility effect. Then, net present value started to decrease, because the purchasing and injecting prices of the required liquefied petroleum gas exceeded that of the oil produced. Economic evaluation showed that addition of 13% liquefied petroleum gas was the most promising scenario, with a net present value of 91 MM$. Thus, we confirmed an optimum liquefied petroleum gas concentration in the CO2 geological storage with enhanced oil recovery process.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3