Affiliation:
1. College of Geoscience & Surveying Engineering, China University of Mining & Technology, Beijing, China
2. Department of Geological & Surveying Engineering, Shanxi Institute of Energy, Jinzhong, China
Abstract
The physical properties of thick coal seams show strong vertical heterogeneity; thus, an accurate characterization of their pore structure is essential for coalbed methane (CBM) exploration and production. A total of 18 coal samples, collected from a thick coal seam in the Yili Basin of NW China, were tested by a series of laboratory experiments to investigate the peat mire evolution and pore structure characteristics. The results show that the No. 4 coal seam has undergone multiple stages of evolution in the peatification stage, and was divided into four water-transgression/water-regression cycles according to the regular cyclic changes of the vitrinite/inertinite ratio, structure preservation index, gelification index, vegetation index, trace element ratios, and stable carbon isotopes of organic matter. The changes of pore structure characteristics with the changes of coal deposition cycles are also analyzed. It is concluded that pore structure characteristics of the four cycles are quite different. In each water-transgression cycle, the vitrinite gradually increased and the inertinite gradually decreased, resulting in a decrease of the porosity, pore volume, specific surface area, and fractal dimension. While in each water-regression cycle, the vitrinite gradually decreased and the inertinite gradually increased, leading to an increase of the porosity, pore volume, specific surface area, and fractal dimension. A strong relationship exists between the porosity, pore volume, specific surface area, fractal dimension, and submacerals, with fusinite and semifusinite which contained more pores having a positive correlation, desmocollinite and corpovitrinite which contained few pores having a negative correlation.
Funder
National Natural Science Foundation of China
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献