Research on energy sharing ability and adaptability of building Complex: A case study with smart community in Japan

Author:

Yu Dan1,Zhou Xiaohan1ORCID,Qian Fanyue2ORCID,Dewancker Bart3,Gao Weijun34ORCID,Zhang Liting5

Affiliation:

1. School of Engineering, Sanda University, Shanghai, China

2. School of Mechanical and Energy Engineering, Tongji University, Shanghai, China

3. ISMART, Qingdao University of Technology, Qingdao, China

4. Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan

5. Energy and Environment Engineering Institute, Shanghai University of Electric Power, Shanghai, China

Abstract

Energy sharing within building complexes depends greatly on the complex load adaptability and policy support. However, most building complex microgrid research concentrates on configuration and operation optimization, rather than energy contributions from different users. The objective of this study is to analyze energy sharing ability and load adaptability for a building complex comprising multiple building types, under transaction liberalization restrictions in different energy markets. The specific research for this study is a smart community in Kitakyushu, Japan, with 49 buildings of different types. The complex's microgrid system in this study comprises photovoltaic, battery, and vehicle to grid services. We obtained six representative typical clusters by reducing the 49 buildings’ dimensionality using principal components and clustering, then Monte Carlo simulation to predict permissible discharge capacities for vehicle to grid (V2G) services. We propose three demand-side liberalization scenarios: self-use, photovoltaic feed-in tariffs (FITs), and free trade; optimizing system configuration under different scenarios using a genetic algorithm. Results confirm that shopping malls achieve best economic benefits with self-use scenario; whereas office building adaptability is more significant for the other scenarios. These results will contribute to user selection and system design for building complex microgrid systems.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3