Calculation method for the amount of contaminant oil during sequential transportation through product oil pipelines

Author:

Liu Enbin1ORCID,Li Wensheng12,Cai Hongjun13,Qiao Weibiao4,Azimi Mohammadamin5

Affiliation:

1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, China

2. CNPC Offshore Engineering Company Limited, Qingdao, China

3. China National Aviation Fuel Group Limited, Chengdu, China

4. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China

5. Trenchless Technology Center, Louisiana Tech University, Ruston, USA

Abstract

A considerable amount of oil contamination is caused by the presence of the trailing oil. This paper aims to simulate and analyze the influences of trailing oil on the quality of oil products in undulating sections. By studying the formation mechanism of mixed oil at inclining pipeline sections and the influences of velocity and oil batches on incline sections, as well as both ups and downs, the correlation is obtained between replacement time of different batches and velocity at various sections. By applying FLUENT 14.5, the maximum time of volume fraction of contaminant oil from 1% to 99% is simulated at cross-sections among different pipeline sections. Aiming at the relationship between oil product replacement time and change time of mixing section volume fraction and flow velocity, the mixing increment of undulating section relative to straight section is obtained. Combining with the empirical mixing length calculation equation, the equation for calculating mixing length considering terrain undulation is obtained. Combined with the actual operation data of Lan-Chengyu’s product oil pipeline, the error of the new mixed oil length calculation equation and actual oil mixing is 0.7966%. Excessive cutting amount of mixed oil will result in the waste of refined oil, and the less cutting amount will cause pollution of refined oil. The new mixed oil length calculation equation can more accurately guide the oil mixing cutting work at the oil station.

Funder

Sichuan Provincial Natural Resources Research Project

Sichuan Applied Basic Research Project

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3