Micro-structural, electrical, and tribological properties of SiC/DLC composite coating grown by PLD on steel

Author:

Yang Chuanlai1,Pan Jiabao1,Xu Manman1,Xi Lin1,Lu Yimin1

Affiliation:

1. School of Mechanical Engineering in Anhui Polytechnic University, Wuhu, China

Abstract

Protective diamond-like carbon (DLC) composite coating was grown on cylindrical steel surface in a simple inclined pulsed laser deposition (PLD) process. Based on this kind of flexible film-synthesis method, mixed deposition was used to generate the gradient interface that could enhance adhesive strength in Ti/SiC interface, and periodic SiC/DLC layers were grown to reduce residual stress of the pure DLC film. This kind of PLD-grown SiC/DLC composite coating on the curved thin steel that was imitated as piston cylinder showed excellent adhesive property and toughness. Compared with the bare steel, DLC-filmed steel strip had a much lower friction coefficient, higher nano-hardness, and enhanced elastic modulus. Raman spectroscopies showed transform of the micro-structure in DLC layers during friction process, revealing the important reason for reducing friction coefficient. Electrical conductivity test displayed the DLC-filmed steel strip was in high resistance state, although its thickness was only 1.27 μm. Further on, good adhesive strength, excellent toughness and high resistance state of SiC/DLC composite coating could be applied in the MEMS advices.

Funder

Science Foundation of AHPU

Scientific Research Project of Universities of Anhui Province

Start-up Fund for Introductions of AHPU

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3