Effect of the Nb content on the microstructure evolution and properties of the CrFeCoNiNbx layers prepared by laser cladding

Author:

Xiao Dongzhen12,Jiang Fulin123,Song Pengfang12,Song Tao12

Affiliation:

1. Qingdao University of Technology, Qingdao, Shandong, China

2. Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Qingdao University of Technology, Ministry of Education, Qingdao, Shandong, China

3. Collaborative Innovation Center for Shandong's Main crop Production Equipment and Mechanization, Qingdao, Shandong, China

Abstract

Marine engineering components, such as ship stern shafts, are often subject to local overload, wear and seawater erosion. In order to improve the performance and service life of marine engineering components, the CrFeCoNiNb x ( x = 0, 0.25, 0.5, 0.75 and 1) high-entropy alloy (HEA) coating were prepared on the 42CrMo substrate by laser cladding. The microstructure, microhardness, wear behaviour and the corrosion resistance of the prepared HEA coatings with different Nb contents were evaluated. Results show that the cladding layer of CrFeCoNiNb0 is composed of single dendrites with a small amount of short rod-shaped protrusions distributed along the dendrites. The addition of Nb promotes growing of the original dendrite structures into interdendritic structures with internal substructures retained. Apart from the variations in the microstructure, the formation of the Laves phase, which is both hard and corrosion resistant, is also an important factor in the performance of the cladding. This variation leads to the increase of the microhardness of the cladding layer, accompanying with the improvement of wear resistance property. Notably, the improvement of microhardness is ascribed to the combined contribution from the refinement strengthening, the solid-solution strengthening and the dispersion strengthening by Laves phase. The improvement of the corrosion resistance is mainly attributed to dense passivation film formed by the Cr and Nb on the surface of the cladding layer. The above results suggest that the CrFeCoNiNb x cladding layer could achieve synergistic interaction between the mechanical properties and the corrosion resistance on stern shaft surface.

Publisher

SAGE Publications

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3