A new approach for constructing rough structures to fabricate superhydrophobic Ni–B/graphene oxide (GO) coating

Author:

Shen Xianlong1,Zhang Yongjun1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, PR China

Abstract

In this study, AZ91 magnesium alloy was effectively coated with a superhydrophobic Ni–B/graphene oxide (GO) coating via electroless plating and surface modification. Scanning electron microscopy, energy dispersion spectrum, X-ray powder diffraction, and X-ray photoelectron spectroscopy analysis were employed to describe the development of Ni–B/GO coatings. The results show that the micro–nano rough structures of the superhydrophobic coating were owing to the synergistic action of GO and sodium dodecyl sulphate and their respective effects on the coating. It was also found that the nanoscale GO particle wrapped around the underdeveloped nickel grains. Also, the composition and structure of the typical superhydrophobic coating cross-section revealed the growth of the rough structures. Furthermore, the superhydrophobic coating with a water contact angle of up to 161.6° had an amorphous structure. The micro–nano coating therefore provides a novel viewpoint for preparing superhydrophobic coating on magnesium alloy.

Publisher

SAGE Publications

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3