Integration of bioinformatics analysis to identify possible hub genes and important pathways associated with clear cell renal cell carcinoma

Author:

Kumar Anshu1,Yadav Ravi Prakash2,Chatterjee Srilagna2,Das Madhusudan2,Pal Dilip Kumar1ORCID

Affiliation:

1. Department of Urology, West Bengal Unversity of Health Sciences, Kolkata, India

2. Department of Zoology, University of Calcutta, Kolkata, West Bengal, India

Abstract

Introduction: One of the most fatal urological malignancies is clear cell renal cell carcinoma (ccRCC), yet little is known about its pathophysiology or prognosis. This study is aimed at obtaining some novel biomarkers with diagnostic and prognostic meaning and may find out potential therapeutic targets for ccRCC. Material and Methods: Using three publically accessible ccRCC gene expression profiles acquired from the Gene Expression Omnibus database, differentially expressed genes (DEG) were discovered and function enrichment analyses were carried out. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted by using the DAVID tool and a protein-protein interaction (PPI) network was constructed and visualized by Cytoscape. Then we identified 10 hub genes using the cytohubba plugin of Cytoscape based on degree score. The mRNA and protein expression of hub genes was analyzed by GEPIA and Human Protein Atlas (HPA) database. Then, prognosis analysis of hub genes was conducted using GEPIA 3.0 which consists of data from The Cancer Genome Atlas (TCGA). Results: We discovered 293 DEG which is highly enriched in several biological processes connected to immune-regulation and pathways linked to tumors, including HIF-1, PI3K-AKT, and metabolic pathways. In particular, C1QA, C1QB, FCER1G, and TYROBP were related to advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. Conclusions: Further molecular biological studies are required to confirm the role of the putative biomarkers in human ccRCC. Our work highlighted the hub genes and pathways involved in the progression of ccRCC.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3