The feasibility of multimodal fiber optic spectroscopy analysis in bladder cancer detection, grading, and staging

Author:

Morselli Simone12ORCID,Baria Enrico3,Cicchi Riccardo34,Liaci Andrea12ORCID,Sebastianelli Arcangelo12,Nesi Gabriella5,Serni Sergio12,Pavone Francesco Saverio346,Gacci Mauro12

Affiliation:

1. Unit of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, Careggi University Hospital, Florence, Italy

2. Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

3. European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy

4. National Institute of Optics, National Research Council, Sesto Fiorentino, Italy

5. Division of Pathological Anatomy, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy

6. Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy

Abstract

Objective: To prove the feasibility of Multimodal Fiber Optic Spectroscopy (MFOS) analysis in bladder cancer (BCa) detection, grading, and staging. Materials and methods: Bladder specimens from patients underwent TURBT or TURP were recorded and analyzed with MFOS within 30 min from excision. In detail, our MFOS combined fluorescence, Raman spectroscopy, and diffuse reflectance. We used these optical techniques to collect spectra from bladder biopsies, then we compared the obtained results to gold standard pathological analysis. Finally, we developed a classification algorithm based on principal component analysis-linear discriminant analysis. Results: A total of 169 specimens were collected and analyzed from 114 patients, 40 (23.7%) healthy (from TURP), and 129 (76.3%) with BCa. BCa specimens were divided according to their grade—34 (26.4%) low grade (LG) and 95 (73.6%) high grade (HG) BCa—and stage—64 (49.6%) Ta, 45 (34.9%) T1, and 20 (15.5%) T2. MFOS-based classification algorithm correctly discriminated healthy versus BCa with 90% accuracy, HG versus LG with 83% accuracy. Furthermore, it assessed tumor stage with 75% accuracy for Ta versus T1, 85% for T1 versus T2, and 86% for Ta versus T2. Conclusions: Our preliminary results suggest that MFOS could be a reliable, fast, and label-free tool for BCa assessment, providing also grading and staging information. This technique could be applied in future for in vivo inspection as well as of ex vivo tissue biopsies. Thus, MFOS might improve urothelial cancer management. Further studies are required.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3