A novel nonlinear controller for enhancement of the transient dynamics performance of a three-wheeled vehicle during different conditions

Author:

Saeedi Mohammad Amin1ORCID

Affiliation:

1. Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

In this study, a new controller to prevent the yaw instability and rollover of a three-wheeled vehicle has been proposed. This controller offers the most obvious opportunity for affecting the vehicle's lateral dynamics performance on the full range of nonlinearities during various operating boundaries. The active combined controller has been designed based on sliding mode control method using an active roll system and an active braking system to dominate the uncertainties of the nonlinear dynamic model. Firstly, to avoid rollover of the three-wheeled vehicle, the roll angle was considered as the control objective, and the anti-roll bar was employed as an actuator to produce the roll moment. Secondly, to increase the maneuverability and lateral dynamics enhancement, an active braking system was designed. In the control system, the yaw rate and the lateral velocity were regarded as the control variables to track their references. Moreover, to verify the performance of the mentioned combined controller, another control system has been designed using the linearization feedback control method. Then, computer simulation has been carried out with a 12 degrees of freedom dynamic model of the three-wheeled vehicle called the delta. Furthermore, a nonlinear tire model has been utilized to compute the longitudinal and the lateral forces. Next, the comparative simulation results confirmed the effectiveness of the robust control system to raise the vehicle's maneuverability and its rollover stability in comparison with the linearization feedback control method, especially when the three-wheeled vehicle is subjected to critical conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Reference33 articles.

1. Steady-state steering of a tilting three-wheeled vehicle

2. Dynamic modelling and experimental validation of three wheeled tilting vehicles

3. Barker M. Chassis design and dynamics of a tilting three wheeled vehicle. PhD Thesis, University of Bath, Bath, UK, 2006.

4. Drew B. Development of active tilt control for a three-wheeled vehicle. PhD Thesis, University of Bath, Bath, UK, 2006.

5. Modal Analysis and Model Updating Studies on a Three-Wheeler Auto

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3