Durability analysis and implementation of the floating frame of reference formulation

Author:

Shabana Ahmed A1,Wang Gengxiang2ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA

2. Faculty of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, Shaanxi, P.R. China

Abstract

The finite element floating frame of reference (FFR) formulation, implemented in most commercial multibody system (MBS) computer programs, is widely used in the durability analysis by a large number of industry sectors. In this paper, a single-degree of freedom system is used to derive a new analytical model from the general nonlinear FFR equations. The obtained new analytical model, which can serve as a benchmark example, is used to address fundamental issues related to the accurate, efficient, and general implementation of the FFR formulation, including the treatment of the algebraic joint constraint equations, fundamental difference between the FFR reference conditions and the structural mechanics boundary conditions, the choice of the deformation modes, handling redundant MBS constraints, effect of the MBS joints on the oscillation frequencies, and difference between fixed and moving boundary conditions. Structural mechanics boundary conditions eliminate degrees of freedom and define the system topology, while the FFR reference conditions eliminate coordinate redundancy and do not introduce any motion constraints. The paper shows analytically how the MBS joint constraint equations change the system oscillation frequencies, demonstrates the effect of using inappropriate set of reference conditions, proves there is no single set of reference conditions suited for all applications, and uses other FE methods to verify the results and support the conclusions drawn. The results obtained in this investigation show that improper selection of the reference conditions can lead to solution errors that exceed 100%, making such a solution completely unreliable in any durability investigation. General implementation of the FFR formulation will significantly contribute to increasing reliance on virtual testing, less reliance on building actual prototypes, better understanding of flexible body dynamics, and better communication between various computer-aided engineering groups.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3