Optimal design of steering trapezoid considering multiple performances of the whole vehicle

Author:

Gao Jin1ORCID,Qi Xiaoping1

Affiliation:

1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming, China

Abstract

As an important component of the steering system, steering trapezoids should be designed to satisfy multiple performances of the vehicle. In this study, theoretical and simulation analysis has been conducted focusing on the influence of the steering tie rod on the Ackermann error, bump steer, forces at the tie rod joints, and frequency characteristics of the whole vehicle. The results show that the Ackermann error is mainly influenced by the position of the outer point of the steering tie rod. The bump steer is mainly influenced by the Z coordinate of the outer point. The impact force at the joint and the frequency characteristics are mainly influenced by the X and Z coordinates of the outer point of the tie rod. The trends of the evaluation indexes for each performance to the hard point coordinates are not completely consistent and some are conflicting. To integrate the vehicle performance, multi-objective optimization is carried out with Archival Micro Genetic Algorithm, Neighborhood Cultivation Genetic Algorithm, and Non-Dominated Sorting Genetic Algorithm-II algorithms considering the hard point coordinates as variables and the evaluation indexes as optimization objectives. The optimization results show that the relative optimal solutions obtained by the three optimization algorithms provide a significant improvement to the Ackermann error, while other performance indexes have differences. In the practical application of steering trapezoid optimization, it is possible to choose the appropriate optimization algorithm based on the focus of the vehicle performance requirements.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3