Coupled elastodynamics of piston compression ring subject to sweep excitation

Author:

Turnbull R1,Mohammadpour M1ORCID,Rahmani R1ORCID,Rahnejat H1,Offner G2

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

2. AVL List GmbH, Graz, Austria

Abstract

The piston compression ring's primary function is to seal the combustion chamber, thus mitigating gas leakage to the crankcase and avoiding loss of pressure loading. As a result, the ring is meant to conform closely to the cylinder surface which promotes increased friction. The compression ring is subjected to combustion pressure loading, ring tension, varying inertial force and friction. It is a slender ring of low mass, thus undergoes complex elastodynamic behaviour, when subjected to a multitude of forces. These motions occur in the ring's radial in-plane and axial out-of-plane dynamics, which comprise flutter, ring axial jump, compression-extension, ring twist and rotational drag. An implication of these motions can be loss of sealing, gas blow-by, loss of power and lubricant degradation/oil loss, to name but a few. Consequently, understanding and accurately predicting ring dynamic behaviour under transient conditions is an important step in any subsequent modelling for evaluation of cylinder system efficiency. There have been a plethora of investigations for ring dynamics, often decoupling the ring behaviour in its in-plane and out-of-plane motions. This approach disregards any transfer of dynamic energy from one degree of freedom to another which is only applicable to rectangular ring cross-sections. Alternatively, there are computationally intensive approaches such as finite element analysis which are not conducive for inclusion in any subsequent system level engine modelling where ring response alters in an instantaneous manner. This would require embedded finite element analysis within a transient analysis. This paper presents a finite difference numerical analysis for coupled in-plane and out-of-plane motions of compression rings with practical cross-sectional geometries, which are mostly not rectangular. The formulated method can be integrated into a system level transient cyclic analysis of ring-bore contact. The presented approach takes into account the energy transfer between different degrees of freedom. The predictions are validated against precise non-contact measurements of ring elastodynamic behaviour under amplitude-frequency sweeps. This approach has not hitherto been reported in literature and constitutes the main contribution of the paper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3