Affiliation:
1. Faculty of Engineering and Applied Science, Ontario Tech University, Canada
Abstract
Active rear steering has been used in many research work to enhance ground vehicles’ lateral stability. However, there is a shortage in the published research studies that consider the incorporation of active rear steering for autonomous vehicles applications, especially in case of multi-axle combat vehicles. In this paper, various H∞ controllers are developed to actively steer rear axles of a multi-axle combat vehicle using a linearized bicycle model. The proposed controllers are incorporated with a 22 degrees of Freedom nonlinear Trucksim full vehicle model to study and compare the developed controllers’ performance on a hard surface. Moreover, a frequency-domain analysis is conducted to investigate the influence of the active rear steering on the path-following controllers’ robustness in terms of stability and performance. Three path-following controllers are designed, where the first controller is applied on the front two axles of the vehicle, while the rear two axles are fixed. The second is applied to all-wheel steering vehicle. The third controller is an integration between the designed front steering path-following controller and a developed lateral stability active rear steering controller. Eventually, a series of virtual maneuvers are performed to evaluate the effectiveness of the intended controllers to present the advantages and limitations of each controller at different driving conditions.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献