Offline model predictive control approach to micro-slip control in gearshifts of dual clutch transmission

Author:

Wang Xiwen1ORCID,Lu Tongli1

Affiliation:

1. State Key Laboratory for Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, China

Abstract

Dual clutch transmission can avoid some noise vibration and harshness issues caused by other transmissions with single clutch. And applying micro-slip control on clutches can further improve the gearshift performance of transmission compared to the lock-up control. Considering the real-time characteristic of vehicle control, an offline model predictive controller designed by multi-parameter quadratic programming was creatively applied in dual clutch transmission to obtain both clutch torque at the same time with optimal control algorithm. In this way, while realizing the micro-slip state of the clutches, the fast response speed can be realized through the off-line controller, which makes it more feasible and practical for transmission control. A six degrees of freedom vehicle powertrain system model was built in MATLAB/Simulink to simulate the proposed control algorithm. The simulation results show that the micro-slip control avoid the negative torque compared to the lock-up control, which leads to a smoother shift process. In addition, compared with the proportional–integral–derivative micro-slip controller, the offline model predictive controller can achieve more stable control effects with less output torque fluctuation and shorter gearshift time.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3