Biomechanical optimal control of human arm motion

Author:

Maas R1,Leyendecker S1

Affiliation:

1. Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany

Abstract

As both ordinary and well-trained human motion is mostly planned and controlled unconsciously by the central nervous system (CNS), human control mechanisms remain relatively obscure. Despite, they are an interesting topic, for example, with regard to improve protheses or athletic motion. To learn and understand more about the control of human motion, we use rigid multibody systems to represent bones and joints and formulate an optimal control problem (OCP) with the goal to minimise a physiologically motivated cost function, while the equations of motion and further nonlinear constraints have to be fulfilled. The investigated biomechanical movements are induced either via joint torques or via Hill-type muscle forces. We compare several cost functions known from literature to another one concerning the impact on the joints by involving the constraint forces. A direct transcription method called DMOCC (discrete mechanics and optimal control for constraint systems) is used to solve the OCP, whereby we benefit from its structure preserving formulation, as the resulting optimal discrete trajectories are symplectic-momentum preserving.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3