Affiliation:
1. Departimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy
Abstract
This article discusses the use of generalized eigenanalysis to extract reduced order models from the linearization of structural and aeroelastic problems written in differential-algebraic form. These problems may arise from multi-body analysis and in general from mixed approaches, where a high degree of generality and modelling flexibility are sought. A method based on a shift technique is proposed, that allows to exploit the regularity of the matrix pencil resulting from the linearization of differential-algebraic problems. Alternatively, the generalized Schur decomposition, or QZ decomposition, is directly used to select a cluster of eigenvalues related to the dynamic states. The two approaches are used to reduce the model to ordinary differential in state-space form. The two methods are applied to simple numerical problems, highlighting their robustness and versatility compared to other techniques. They are also applied to numerical models of a high-altitude long endurance aircraft obtained using a free general-purpose multi-body solver and a dedicated mixed variational solver.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献