Statistical and frequency analysis of vibrations signals of roller bearings using empirical mode decomposition

Author:

Singh Parbant1ORCID,Harsha SP1

Affiliation:

1. Vibration & Noise Control Lab, Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, Uttarakhand, India

Abstract

In the present work, defect detection in rolling bearing using empirical mode decomposition of vibration signal data has been done. Higher order statistical parameters viz root mean square, kurtosis, skewness, and crest factor are utilized to diagnose bearing fault. Simulated bearing defects as spall on outer race, on roller, and on inner race are used for the study. For experimental study, four different load and speed combination have been chosen to widen the acceptability of results. The effect of bearing speed on statistical parameters is also studied. Effectiveness of signal decomposition by the empirical mode decomposition method has been established by the results. Kurtosis and crest factor values of decomposed and unprocessed signals have been selected and empirical mode decomposition-based values are shown as effective parameters for defect identification. The crest factor and Kurtosis of outer race defect show greater sensitivity to the load and speed variations, while the skewness of same defect shows its insensitivity to load and speed variations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3