Affiliation:
1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
2. China Coal Zhangjiakou Coal Mining Machinery Co., Ltd, Zhangjiakou, China
Abstract
This paper presents an approach to predict and evaluate the dynamic characteristics of the transmission system in conveying equipment under various working conditions. To solve the problems of varying mass and load, the space, which the transmission system locates, is divided into multiple space-fixed finite control volumes according to the material distribution as well as motion pattern. Each volume is further discretized into a series of finite elements. System-governing equations are obtained by the assembly of all the individual elements’ dynamic equations and the topological structure of the transmission system. Karnopp model is utilized as the basis to render the duty resistance induced by friction. As an illustrative example, the present method is applied to model a large-scale armoured face conveyor, and the corresponding simulation code is developed based on Matlab/Simulink. Simulation results show that the start-up and stop processes with empty load are relatively smooth, which is beneficial to protect the components of the system, especially the chains. Furthermore, the resulted chain-steady velocity, chain-load spectrum and minimum tension force can be directly used to predict the conveying capacity, evaluate chain strength and optimise the pretension force.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献