Thermal analysis of hydrodynamic lubricated journal bearings in internal combustion engines

Author:

Lorenz Norbert1,Offner Günter2,Knaus Oliver2

Affiliation:

1. Radon Institute for Computational and Applied Mathematics and Mathconsult GmbH, Austria

2. Advanced Simulation Technologies, AVL List GmbH, Austria

Abstract

Hydrodynamic journal bearings are essential components in the internal combustion engines. The prediction of their reliability, durability, and economy, and also of their friction loss power and wear, are of highest importance. For an appropriate representation of the hydrodynamic load-carrying capacity and also the friction behavior, the multibody dynamics of the contacting components, the shape of the contacting component surfaces, the amount of the available lubricant, and the properties of the lubricant itself are of importance. A Reynolds-averaged equation with laminar flow conditions in combination with a dry asperity contact model and a multibody dynamic simulation of the structural components is a typical modeling approach for that purpose. Furthermore, this paper shows a newly developed model for the temperature distribution in the lubricant and the bearing structures. It includes thermal interface conditions between these domains, which incorporates the asperity energy source and predicts the temperature in supply areas. The presented method is applied for a typical engineering task of a sensitivity analysis for oils with different viscosity index improvers in a main bearing of a four-cylinder inline diesel engine. The influence of the oil film temperature on the oil film viscosity and, therefore, on the load-carrying capacity is shown. Furthermore, the simplified two-dimensional approach is compared with a three-dimensional approach in terms of the obtained result. The presented results show similar accuracy of the two-dimensional approach compared to the equivalent three-dimensional case.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3