Stability analysis and design of an unmanned deformable vehicle during coupled reconfiguration motion

Author:

Liu Jun1ORCID,Yan Zhenkun1,Lu Mingming1,Zhang Liang1,Cui Taowen1,Zheng Minyi1,Wu Di1

Affiliation:

1. School of Automotive and Traffic Engineering, Hefei University of Technology, Hefei, China

Abstract

An unmanned deformable vehicle, which is a new type of robot combining a car and a robot, can drive at high speed with wheels and walk with steps. An unmanned deformable vehicle is prone to tipping instability when reconfigured between the automotive and humanoid states. The following work reported herein addresses these issues. The kinematic model of an unmanned deformed vehicle during the coupled reconfiguration process was established. The zero moment point (ZMP) theory was used as the stability criterion, and based on the requirement for stability during the reconstruction process, a genetic algorithm was used to find the optimal value of the support state foot landing position for the parking and driving coupled reconfiguration, and for the optimal value of the driving acceleration of the deformed vehicle during the driving coupled reconfiguration. On the basis of the optimal foot landing position, the total reconfiguration time threshold, deformed vehicle driving acceleration threshold, and support surface tilt angle threshold were analysed and calculated in accordance with stability requirements during the reconfiguration. Finally, the stability performance of the optimised system was verified through prototype testing.

Funder

the Key Research and Development Program of Anhui Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3