Selecting Burnup Algorithms in OpenMC Using the Calculated Benchmark of LEU Assembly and MOX Fuel

Author:

Tanash Hamza A1ORCID,Solovyov Denis A1ORCID,Zimin Vyacheslav G1ORCID,Lobarev Alexey L1ORCID,Plotnikov Denis A1ORCID,Schukin Nikolay V1ORCID

Affiliation:

1. National Research Nuclear University (MEPhI)

Abstract

OpenMC is a state-of-the-art Monte Carlo neutron transport simulation code that uses the Python programming language as an API. OpenMC supports eight burnout simulation algorithms. This study presents the results of choosing an integration method for modeling the burnup of fuel assemblies with burnable poisons for WWER-1000 reactors. Burnout simulation results from OpenMC were compared with those reported in the OECD benchmark. 8 different numerical integrators can be used to model burnout in OpenMC code: PI, CE/CM, LE/QI, CE/LI, CF4, EPC-RK4, SI-CE/LI, SI-LE/QI. The test results showed that the SI-CE/LI, SI-LE/QI integrators require significantly more time to calculate one burnup step than the others with the same accuracy, so they were excluded from further consideration. The PI integrator showed low integration accuracy at the same burnup steps with other integrators. However, PI has a high performance compared to other integrators, and as the integration step decreases, it converges to one solution, which can be chosen as a reference for assessing the quality of other integrators. Based on the results obtained using the fine step PI integrator, it was decided to use the CE/LI integrator for further work. The results obtained with CE/LI were compared with those obtained with the VVER-1000 LEU and MOX benchmark for codes: MCU, TVS-M, WIMS8A, HELIOS, MULTICELL and showed good agreement. Thus, we can conclude the applicability of the CE/LI integrator as part of OpenMC for modeling the burnup of fuel assemblies containing burnable poisons. During the work, the resources of the high-performance computer center of the National Research Nuclear University MEPhI were used.

Publisher

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3