Scalable and comprehensive characterization of antigen-specific CD8 T cells using multi-omics single cell analysis

Author:

Boutet Stephane C1,Walter Dagmar1,Stubbington Michael J T1,Pfeiffer Katherine A1,Lee Josephine Y1,Taylor Sarah E B1,Montesclaros Luz1,Lau Julia K1,Riordan Daniel P1,Barrio Alvaro Martinez1,Brix Liselotte2,Jacobsen Kivin2,Yeung Bertrand3,Zhao Xinfang3,Mikkelsen Tarjei S1

Affiliation:

1. 110x Genomics

2. 2Immudex, Denmark

3. 3BioLegend, Inc.

Abstract

Abstract Understanding the antigen binding specificities of lymphocytes is key to the development of effective therapeutics for cancers and infectious diseases. Recent technological advancements have enabled the integration of simultaneous cell-surface protein, transcriptome, immune repertoire and antigen specificity measurements at single cell resolution, providing comprehensive, scalable, high-throughput characterization of immune cells. Using the 10x Genomics Single Cell Immune Profiling Solution with Feature Barcoding technology with 14 oligo-conjugated antibodies and 50 Immudex peptide-MHC I Dextramer reagents (pMHC) panels spanning different CMV, EBV, Influenza, HIV and Cancer antigens, we performed multi-omic characterization of ~100,000 CD8+ T cells from four MHC-matched donors. The multi-omic combination of gene expression, paired alpha/beta T cell receptor (TCR) repertoire, cell surface proteins and pMHC binding specificity allowed the identification of CD8+ T cell subpopulations with specificity for pMHCs within our panel. We observed multiple TCRs that bound the same pMHC and identified enriched amino acid motifs within TCR sequences that shared specificities. We compared the CDR3 amino acid sequences of the pMHC-specific TCR clonotypes with previously reported sequences with the same binding specificities to show that we could identify new and known CDR3 sequences. This analytical framework provides a systematic and scalable method for deciphering TCR–pMHC specificity combined with cellular phenotype identity which is critical for developing a better understanding of the adaptive immune response to cancer and infectious diseases and will be key in the development of successful immunotherapies.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3