Human Eosinophils Produce Biologically Active IL-12: Implications for Control of T Cell Responses

Author:

Grewe Markus1,Czech Wolfgang2,Morita Akimichi1,Werfel Thomas3,Klammer Michaela1,Kapp Alexander3,Ruzicka Thomas1,Schöpf Erwin2,Krutmann Jean1

Affiliation:

1. *Department of Dermatology, Heinrich-Heine-University, Düsseldorf, Germany;

2. †Department of Dermatology, Albert-Ludwigs-University, Freiburg, Germany; and

3. ‡Department of Dermatology, Medizinische Hochschule Hannover, Hannover, Germany

Abstract

AbstractThe present study assessed the capacity of eosinophils (EOS) to synthesize the cytokine IL-12. Blood-derived, highly purified human EOS from six atopic patients and two nonatopic individuals were treated in culture with IL-4, IL-5, granulocyte-macrophage CSF, IFN-γ, TNF-α, IL-1α, RANTES, and complement 5a, respectively. The expression of both IL-12 protein and mRNAs for the p35 and p40 IL-12 subunits was strongly induced in all donors by the Th2-like cytokines IL-4 and granulocyte-macrophage CSF and was also moderately induced by TNF-α and IL-1α. IL-5 treatment resulted in IL-12 synthesis in four atopic donors and one nonatopic donor, whereas IFN-γ induced IL-12 synthesis in only two atopic donors. In contrast, RANTES exclusively induced mRNA for the p40 subunit without detectable protein release, and complement 5a had no effect on IL-12 mRNA or protein expression. EOS-derived IL-12 was biologically active, because supernatants derived from IL-4-treated EOS superinduced the Con A-induced expression of IFN-γ by a human Th1-like T cell line. This activity was neutralized by anti-IL-12 Abs. In conclusion, EOS secrete biologically active IL-12 after treatment with selected cytokines, which mainly represent the Th2-like type. Consequently, EOS may promote a switch from Th2-like to Th1-like immune responses in atopic and parasitic diseases.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3