Altered Expression Level of a Systemic Nuclear Autoantigen Determines the Fate of Immune Response to Self

Author:

Kawahata Kimito1,Misaki Yoshikata1,Komagata Yoshinori12,Setoguchi Keigo1,Tsunekawa Shinji3,Yoshikawa Yasuji4,Miyazaki Jun-ichi5,Yamamoto Kazuhiko1

Affiliation:

1. *Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan;

2. †Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215;

3. ‡Medical and Biological Laboratories, Ina, Japan;

4. §Department of Clinical Laboratory, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan; and

5. ¶Department of Nutrition and Physiological Chemistry, Osaka University Medical School, Suita, Japan

Abstract

Abstract One of the hallmarks of systemic autoimmune diseases is immune responses to systemic nuclear autoantigens. We have examined the fate of the immune response against a nuclear autoantigen using human U1 small nuclear ribonucleoprotein-A protein (HuA) transgenic (Tg) mice by adoptive transfer of autoreactive lymphocytes. We obtained two Tg lines that have different expression levels of the transgene. After spleen cells from HuA-immunized wild-type mice were transferred to Tg mice and their non-Tg littermates, these recipients were injected with HuA/IFA to induce a recall memory response. HAB69, which expressed a lower amount of HuA, exhibited a vigorous increase in the autoantibody level and glomerulonephritis. Moreover, the autoreactivity spread to 70K autoantigen. Alternatively, in HAB64, which expressed a higher amount of HuA, the production of autoantibody was markedly suppressed. The immune response to HuA autoantigen was impaired as demonstrated in a both delayed-type hypersensitivity response and proliferation assay. This inhibition was Ag-specific and was mediated by T cells. These data suggest that the expression level of systemic autoantigens influences the outcome of the immune response to self.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3