Rheumatoid Factor Specificity of a VH3-Encoded Antibody Is Dependent on the Heavy Chain CDR3 Region and Is Independent of Protein A Binding

Author:

Zhang Meilin1,Majid Adrian1,Bardwell Philip1,Vee Chris1,Davidson Anne1

Affiliation:

1. Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Abstract

AbstractRheumatoid factors (RF) recognize conformational determinants located within the Fc portion of IgG. By analyzing a panel of monoclonal rheumatoid arthritis (RA)-derived RFs, we previously demonstrated that the somatically generated light chain complementarity-determining region 3 (CDR3) contributes to RF specificity. We have now generated a panel of heavy chain mutants of the B′20 Ab, a high affinity RA-derived IgM RF. B′20 also binds avidly to protein A and weakly to ssDNA and tetanus toxoid. B9601, a RF negative Ab that is highly homologous to B′20 but does not bind any of the Ags tested, and RC1, a low affinity polyreactive RF, were used to generate heavy chain mutants with framework (FR) and CDR switches. The mutated heavy chains were cotransfected into a myeloma cell line with the germline counterpart of the B′20 light chain, and the expressed Ig tested for antigenic specificity. We show that both RF specificity and polyreactivity of B′20 is dependent on its unique heavy chain CDR3 region. Replacement with a B9601 CDR3 shortened to the same length as the B′20 CDR3, and with only 5 amino acid differences, did not restore Fc binding. Conversely, absence of protein A binding of B9601 is due to the presence of a serine residue at position 82a in the B9601 heavy chain FR3 region. Together, our data suggest that Ig gene recombination events can generate B cells with autoantibody specificities in the preimmune repertoire. Abnormal release, activation, expansion, or mutation of such cells might all contribute to the generation of a high titer RF response in patients with RA.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3